Increased nitric oxide production following chronic hypoxia contributes to attenuated systemic vasoconstriction.
نویسندگان
چکیده
Attenuated vasoconstrictor reactivity following chronic hypoxia (CH) is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization and diminished intracellular [Ca(2+)]. We tested the hypothesis that increased production of nitric oxide (NO) after CH contributes to blunted vasoconstrictor responsiveness. We found that basal NO production of mesenteric arteries from CH rats (barometric pressure = 380 Torr; 48 h) was greater than that of controls (barometric pressure = 630 Torr). In addition, studies employing pressurized mesenteric arteries (100-200 microM ID) abluminally loaded with the Ca(2+) indicator fura 2-AM demonstrated that although NO synthase (NOS) inhibition normalized agonist-induced vasoconstrictor responses between groups, VSM cell [Ca(2+)] in vessels from CH rats remained diminished compared with controls. To determine whether elevated NO production following CH results from increased NOS protein levels, we performed Western blots for NOS isoforms by using mesenteric arteries from control and CH rats. Endothelial NOS levels did not differ between groups, and other NOS isoforms were not detected in these samples. Selective endothelial loading of fura 2-AM was employed to test the hypothesis that elevated endothelial cell [Ca(2+)] following CH accounts for enhanced NOS activity. These experiments demonstrated greater endothelial cell [Ca(2+)] in mesenteric arteries isolated from CH rats compared with controls. We conclude that enhanced production of NO resulting from elevated endothelial cell [Ca(2+)] contributes to attenuated reactivity following CH by decreasing VSM cell Ca(2+) sensitivity.
منابع مشابه
Endothelium-derived nitric oxide regulates systemic and pulmonary vascular resistance during acute hypoxia in humans.
OBJECTIVES This investigation sought to determine whether endothelium-derived nitric oxide contributes to hypoxia-induced systemic vasodilation and pulmonary vasoconstriction in humans. BACKGROUND Endothelium-derived nitric oxide contributes to basal systemic and pulmonary vascular resistance. During hypoxia, systemic vasodilation and pulmonary vasoconstriction occur. There are some data indi...
متن کاملCytochrome p-450 epoxygenase products contribute to attenuated vasoconstriction after chronic hypoxia.
The systemic vasculature exhibits attenuated vasoconstriction following chronic hypoxia (CH) that is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization. We hypothesized that increased production of arachidonic acid metabolites such as the cyclooxygenase product prostacyclin or cytochrome p-450 (CYP) epoxygenase-derived epoxyeicosatrienoic acids (EETs) cont...
متن کاملSafflor yellow B reduces hypoxia-mediated vasoconstriction by regulating endothelial micro ribonucleic acid/nitric oxide synthase signaling
Hypoxia-induced generation of vasoconstrictors reduces cerebral blood flow (CBF) while nitric oxide (NO) synthase (NOS) and microRNAs (miRNA) in endothelial cells (ECs) suppress vasoconstriction. Safflor yellow B (SYB), a natural plant compound, previously attenuated angiotensin II-mediated injury of ECs and maintained endothelial function. This study investigated the putative involvement of NO...
متن کاملCALL FOR PAPERS Rho GTPases in Lung Physiology and Disease Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase
Fagan, Karen A., Masahiko Oka, Natalie R. Bauer, Sarah A. Gebb, D. Dunbar Ivy, Kenneth G. Morris, and Ivan F. McMurtry. Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. Am J Physiol Lung Cell Mol Physiol 287: L656–L664, 2004. First published February 20, 2004; 10.1152/ajplung.00090.2003.—RhoA GTPase mediates a variet...
متن کاملAttenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase.
RhoA GTPase mediates a variety of cellular responses, including activation of the contractile apparatus, growth, and gene expression. Acute hypoxia activates RhoA and, in turn, its downstream effector, Rho-kinase, and previous studies in rats have suggested a role for Rho/Rho-kinase signaling in both acute and chronically hypoxic pulmonary vasoconstriction. We therefore hypothesized that activa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 284 5 شماره
صفحات -
تاریخ انتشار 2003